ORBITER2.GIF (15322 Byte)ORBITER.GIF (26525 Byte)


The orbiter spacecraft is the final element of the Space Shuttle system. It can transport into near earth orbit 100 to 600 nautical miles (115 to 690 statute miles) up to 29,484 kilograms (65,000 pounds) of cargo. This cargo (called payload) is carried in a bay 4.57 meters (15 feet) in diameter and 18 meters (60 feet) long. It can bring back from space cargo weighing a total of 14,515 kilograms (32,000) pounds.

The orbiter normally carries a flight crew of 4 plus 3 additional passengers. A total of 10 persons could be carried under emergency conditions. The basic mission is 7 days in space; with additional supplies, a 30 day mission is possible. The shuttle can be on launch pad standby for 24 hours, and can be launched from standby within 2 hours. In its return to earth, the orbiter has a cross-range maneuvering capability of 1,100 nautical miles (1,265 statute miles).

During entry, the thermal protection system covering the entire orbiter provides the protection for the orbiter to survive the extremely high temperatures encountered during entry. The thermal protection system is reusable (it does not burn off or ablate during entry).

The unpowered orbiter glides to Earth and lands on a runway like an airplane. Nominal touchdown speed varies from 184 to 196 knots (213 to 225 miles per hour).

The main landing gear wheels have a braking system for stopping the orbiter on the runway, and the nose wheel is steerable, again similar to a conventional airplane. Landing sites are located at the KSC and Edwards Air Force Base.


Orbiter Propulsion System

eng.gif (3108 Byte)

Main Engines

The main engines can be throttled over a range of 65 to 109 percent of their rated power level in 1-percent increments. A value of 100 percent corresponds to a thrust level of 375,000 pounds at sea level and 470,000 pounds in a vacuum. A value of 104 percent corresponds to 393,800 pounds at sea level and 488,800 pounds in a vacuum; 109 percent corresponds to 417,300 pounds at sea level and 513,250 pounds in a vacuum.

At sea level, the engine throttling range is reduced due to flow separation in the nozzle, prohibiting operation of the engine at its 65-percent throttle setting, referred to as minimum power level. All three main engines receive the same throttle command at the same time. Normally, these come automatically from the orbiter general-purpose computers through the engine controllers. During certain contingency situations, manual control of engine throttling is possible through the speed brake/thrust controller handle. The throttling ability reduces vehicle loads during maximum aerodynamic pressure and limits vehicle acceleration to 3 Gs maximum during boost.

Each engine is designed for 7.5 hours of operation over a life span of 55 starts. Throughout the throttling range, the ratio of the liquid oxygen-liquid hydrogen mixture is 6-to-1. Each nozzle area ratio is 77.5-to-1. The engines are 14 feet long and 7.5 feet in diameter at the nozzle exit.


Reaction Control System Engines

There are 38 primary Reaction Control System (RCS) engines and six vernier RCS engines located on the orbiter. The first use of selected primary reaction control system engines occurs at orbiter/external tank separation. The selected primary reaction control system engines are used in the separation sequence to provide an attitude hold for separation. Then they move the orbiter away from the external tank to ensure orbiter clearance from the arc of the rotating external tank. Finally, they return to an attitude hold prior to the initiation of the firing of the Orbital Maneuvering System (OMS) engines to place the orbiter into orbit.

The primary and/or vernier RCS engines are used normally on orbit to provide attitude pitch, roll and yaw (rotational) maneuvers as well as translation maneuvers.

During the initial entry sequence, selected primary RCS engines are used to control the orbiter's attitude (pitch, roll and yaw). As aerodynamic pressure builds up, the orbiter flight control surfaces become active and the primary reaction control system engines are inhibited.


Orbital Maneuvering System Engines

The two OMS engines are used to place the orbiter on orbit, for major velocity maneuvers on orbit and to slow the orbiter for reentry, called the deorbit maneuver. Normally, two OMS engine thrusting sequences are used to place the orbiter on orbit, and only one thrusting sequence is used for deorbit. The deorbit maneuver decreases the orbital velocity by approximately 300 fps (205 mph).

In some missions, only one OMS thrusting sequence is used to place the orbiter on orbit. This is referred to as direct insertion. Direct insertion is a technique used in some missions where there are high-performance requirements, such as a heavy payload or a high orbital altitude. This technique uses the Space Shuttle main engines to achieve the desired apogee (high point in an orbit) altitude, thus conserving orbital maneuvering system propellants. Following jettison of the external tank, only one OMS thrusting sequence is required to establish the desired orbit altitude.

For deorbit, the orbiter is rotated tail first in the direction of the velocity by the primary reaction control system engines. Then the OMS engines are used to decrease the orbiter's velocity.


Payload Bay


Payload Bay Doors

The port and starboard doors are 60 feet long with a combined area of approximately 1,600 square feet. Each door is made up of five segments that are interconnected by circumferential expansion joints. Each door hinges on 13 external hinges (five shear and eight idlers). The lower half of each hinge attaches to the midfuselage sill longeron. The hinges rotate on bearings with dual rotational surfaces. There are five shear hinges and eight floating hinges. The floating hinges allow fore and aft movement of the door panels for thermal expansion.

The forward 30-foot sections of both doors incorporate radiators that can be deployed; they are hinged and latched to the door inner surface in order to reject the excess heat of the Freon-21 coolant loops from both sides of the radiator panels when the doors are open. An electromechanical actuation system on the door unlatches and deploys the radiators when open and latches and stows the radiators when closed.


Remote Manipulator System

The payload deployment and retrieval system includes the electromechanical arm that maneuvers a payload from the payload bay of the space shuttle orbiter to its deployment position and then releases it. It can also grapple a free-flying payload, maneuver it to the payload bay of the orbiter and berth it in the orbiter. This arm is referred to as the remote manipulator system (RMS).

The RMS arm is 50 feet 3 inches long and 15 inches in diameter and has six degrees of freedom. It weighs 905 pounds, and the total system weighs 994 pounds.

The RMS has six joints that correspond roughly to the joints of the human arm, with shoulder yaw and pitch joints; an elbow pitch joint; and wrist pitch, yaw and roll joints. The end effector is the unit at the end of the wrist that actually grabs, or grapples, the payload. The two lightweight boom segments are called the upper and lower arms. The upper boom connects the shoulder and elbow joints, and the lower boom connects the elbow and wrist joints. The RMS arm attaches to the orbiter payload bay longeron at the shoulder manipulator positioning mechanism. Power and data connections are located at the shoulder MPM.

The RMS is capable of deploying or retrieving payloads weighing up to 65,000 pounds. The RMS can also retrieve, repair and deploy satellites; provide a mobile extension ladder for extravehicular activity crew members for work stations or foot restraints; and be used as an inspection aid to allow the flight crew members to view the orbiter's or payload's surfaces through a television camera on the RMS.

The basic RMS configuration consists of a manipulator arm; an RMS display and control panel, including rotational and translational hand controllers at the orbiter aft flight deck flight crew station; and a manipulator controller interface unit that interfaces with the orbiter computer.

One flight crew member operates the RMS from the aft flight deck control station, and a second flight crew member usually assists with television camera operations. This allows the RMS operator to view RMS operations through the aft flight deck payload and overhead windows and through the closed-circuit television monitors at the aft flight deck station.

Spar Aerospace Ltd., a Canadian company, designed, developed, tested and built the RMS. CAE Electronics Ltd. in Montreal provides electronic interfaces, servoamplifiers and power conditioners. Dilworth, Secord, Meagher and Assoc. Ltd. in Toronto is responsible for the RMS end effector. Rockwell International's Space Transportation Systems Division designed, developed, tested and built the systems used to attach the RMS to the payload bay of the orbiter.


Inertial Upper Stage

The inertial upper stage is used with the space shuttle to transport NASA's Tracking and Data Relay satellites to geosynchronous orbit, 22,300 statute miles from Earth. The IUS was also selected by NASA for the Magellan, Galileo and Ulysses planetary missions.

The IUS is a two-stage vehicle weighing approximately 32,500 pounds. Each stage is a solid rocket motor. This design was selected over those with liquid-fueled engines because of its relative simplicity, high reliability, low cost and safety.

The IUS is 17 feet long and 9.5 feet in diameter. It consists of an aft skirt, an aft stage solid rocket motor with 21,400 pounds of propellant generating 45,600 pounds of thrust, an interstage, a forward stage solid rocket motor with 6,000 pounds of propellant generating 18,500 pounds of thrust and using an extendable exit cone, and an equipment support section. The equipment support section contains the avionics that provide guidance, navigation, telemetry, command and data management, reaction control and electrical power. All mission-critical components of the avionics system and thrust vector actuators, reaction control thrusters, motor igniter and pyrotechnic stage separation equipment are redundant to ensure better than 98-percent reliability.


Thermal Protection

The thermal protection system consists of various materials applied externally to the outer structural skin of the orbiter to maintain the skin within acceptable temperatures, primarily during the entry phase of the mission. The orbiter's outer structural skin is constructed primarily of aluminum and graphite epoxy.

During entry, the TPS materials protect the orbiter outer skin from temperatures above 350 F. In addition, they are reusable for 100 missions with refurbishment and maintenance. These materials perform in temperature ranges from minus 250 F in the cold soak of space to entry temperatures that reach nearly 3,000 F. The TPS also sustains the forces induced by deflections of the orbiter airframe as it responds to the various external environments. Because the thermal protection system is installed on the outside of the orbiter skin, it establishes the aerodynamics over the vehicle in addition to acting as the heat sink.

Orbiter interior temperatures also are controlled by internal insulation, heaters and purging techniques in the various phases of the mission.

The TPS is a passive system consisting of materials selected for stability at high temperatures and weight efficiency. These materials are as follows:

Reinforced carbon-carbon is used on the wing leading edges; the nose cap, including an area immediately aft of the nose cap on the lower surface (chine panel); and the immediate area around the forward orbiter/external tank structural attachment. RCC protects areas where temperatures exceed 2,300 F during entry.

Black high-temperature reusable surface insulation tiles are used in areas on the upper forward fuselage, including around the forward fuselage windows; the entire underside of the vehicle where RCC is not used; portions of the orbital maneuvering system and reaction control system pods; the leading and trailing edges of the vertical stabilizer; wing glove areas; elevon trailing edges; adjacent to the RCC on the upper wing surface; the base heat shield; the interface with wing leading edge RCC; and the upper body flap surface. The HRSI tiles protect areas where temperatures are below 2,300 F. These tiles have a black surface coating necessary for entry emittance.

Black tiles called fibrous refractory composite insulation were developed later in the thermal protection system program. FRCI tiles replace some of the HRSI tiles in selected areas of the orbiter.

Low-temperature reusable surface insulation white tiles are used in selected areas of the forward, mid-, and aft fuselages; vertical tail; upper wing; and OMS/RCS pods. These tiles protect areas where temperatures are below 1,200 F. These tiles have a white surface coating to provide better thermal characteristics on orbit.

After the initial delivery of Columbia from Rockwell International's Palmdale assembly facility, an advanced flexible reusable surface insulation was developed. This material consists of sewn composite quilted fabric insulation batting between two layers of white fabric that are sewn together to form a quilted blanket. AFRSI was used on Discovery and Atlantis to replace the vast majority of the LRSI tiles. Following its seventh flight, Columbia also was modified to replace most of the LRSI tiles with AFRSI. The AFRSI blankets provide improved producibility and durability, reduced fabrication and installation time and costs, and a weight reduction over that of the LRSI tiles. The AFRSI blankets protect areas where temperatures are below 1,200 F.

White blankets made of coated Nomex felt reusable surface insulation are used on the upper payload bay doors, portions of the midfuselage and aft fuselage sides, portions of the upper wing surface and a portion of the OMS/RCS pods. The FRSI blankets protect areas where temperatures are below 700 F.

Additional materials are used in other special areas. These materials are thermal panes for the windows; metal for the forward reaction control system fairings and elevon seal panels on the upper wing to elevon interface; a combination of white- and black-pigmented silica cloth for thermal barriers and gap fillers around operable penetrations, such as main and nose landing gear doors, egress and ingress flight crew side hatch, umbilical doors, elevon cove, forward RCS, RCS thrusters, midfuselage vent doors, payload bay doors, rudder/speed brake, OMS/RCS pods and gaps between TPS tiles in high differential pressure areas; and room-temperature vulcanizing material for the thick aluminum T-0 umbilicals on the sides of the orbiter aft fuselage.